
1

Epistemological Pluralism and the Revalua-
tion of the Concrete

by Sherry Turkle and Seymour Papert

Versions of this article appeared in the Journal of Mathematical Behavior, Vol. 11, No.1, in March, 
1992, pp. 3-33; Constructionism, I. Harel & S. Papert, Eds. (Ablex Publishing Corporation, 1991), 
pp.161-191; and SIGNS: Journal of Women in Culture and Society, Autumn 1990, Vol. 16 (1). 
Sourced from http://www.papert.org/articles/EpistemologicalPluralism.html

Epistemological pluralism

The concerns that fuel the discussion of women and computers are best served by talking about 
more than women and more than computers. Women’s access to science and engineering has 
historically been blocked by prejudice and discrimination. Here we address sources of exclusion 
determined not by rules that keep women out, but by ways of thinking that make them reluctant 
to join in. Our central thesis is that equal access to even the most basic elements of computation 
requires an epistemological pluralism, accepting the validity of multiple ways of knowing and 
thinking.

With this assertion we find ourselves at the meeting point of three epistemological challenges 
to the hegemony of the abstract, formal, and logical as the privileged canon in scientific thought. 
The first of these challenges comes from within feminist scholarship. Here, the canonical style, 
abstract and rule-driven, is associated with power and elitism, and with the social construction of 
science and objectivity as male.1

A second challenge comes from social scientists who have undermined the privileged status 
of canonical ways of knowing through their studies of scientific and mathematical practice. They 
show us how within laboratories there is a great deal of thinking that does not respect the canon 
and how ”ordinary” people in their kitchens and workplaces make very effective use of a down-to-
earth mathematical thinking very different from the abstract and formal math they were taught 
at school.2

Although few members of this community make a direct connection with feminism, there is a 
convergence of intellectual values -- a ”revaluation of the concrete.” These challenges to the domi-
nant epistemology are intellectually assertive and politically self-conscious. A third challenge most 
often presents itself as neutral and technical. It is a challenge from within computation, as when 
the maverick Macintosh with its iconic interface made its bid against the established IBM perso-



2

nal computer. That the computer should be an ally in the revaluation of the concrete has a certain 
irony; in both the popular and technical cultures there has been a systematic construction of the 
computer as the ultimate embodiment of the abstract and formal. But the computer’s intellectual 
personality has another side: Computers provide a context for the development of concrete thin-
king. When we look at particular cases of individuals programming computers, we see a concrete 
and personal approach to materials that runs into conflict with established ways of doing things 
within the computer culture. The practice of computing provides support for a pluralism that is 
denied by its social construction.3

Since the prevailing image of the computer is that of a logical machine, and since program-
ming is seen as a technical and mathematical activity, the existence of anything but an analytic 
approach in this area makes a dramatic argument for pluralism. But the computer’s most specific 
contribution to the critique of canonical styles depends on something more fundamental. The 
computer stands betwixt and between the world of formal systems and physical things; it has the 
ability to make the abstract concrete. In the simplest case, an object moving on a computer screen 
might be defined by the most formal of rules and so be like a construct in pure mathematics; but at 
the same time it is visible, almost tangible, and allows a sense of direct manipulation that only the 
encultured mathematician can feel in traditional formal systems (see Davis & Hersh, 1981; Papert, 
1980a). The computer has a theoretical vocation: to bring the philosophical down to earth.4

While many can empathize when Carol Gilligan describes people making ”contextual” moral 
decisions (you can cast yourself and acquaintances in the different roles) there is more of a prob-
lem when people try to get close to what it feels like to do science in a style that rejects standard 
notions of ”objectivity.”5 Evelyn Fox Keller, describing such a style in the work of geneticist Barba-
ra McClintock, notes that this is the ”less accessible aspect” of a scientist’s relationship to nature 
(Keller, 1985). We believe she is right. A personal appropriation of epistemological pluralism in 
science requires, at the limit, that we get close to the experiences of an Einstein or a McClintock 
or a Salk. But you can imagine yourself in the place of a programmer more easily than in the place 
of an Einstein. And when you yourself program (an activity within the reach of everyone), you 
can experience the degree to which your style of solving logical problems is very much your own.

In this chapter, we use the computer as an instrument for observing different styles of scientific 
thought and developing categories for analyzing them.6 We find that, besides being a lens through 
which personal styles can be seen, it is also a privileged medium for the growth of alternative 
voices in dealing with the world of formal systems. After presenting cases in which the computer 
serves as an expressive medium for personal styles, we turn to this more speculative theme: As a 
carrier for pluralistic ideas, the computer holds the promise of catalyzing change, not only within 
computation but in our culture at large.



3

Personal appropriation

Consider Lisa, 18, a first-year Harvard student in an introductory programming course. Lisa had 
feared that she would find the course difficult because she is a poet, ”good with words, not num-
bers.” But after years of scorning teachers who had insisted that mathematics is a language, the 
computer has made Lisa ready to reconsider the proposition, and with it her characterization of 
herself as someone ”bad at math.” Lisa started well, surprised to find herself easily in command of 
the course material. But as the term progressed she reluctantly decided that she ”had to be a diffe-
rent kind of person with the machine.” She could no longer resist a pressure to think in ways that 
were not her own. She was in trouble, but her difficulty expressed a strength, not a weakness. Her 
growing sense of alienation did not stem from an inability to cope with programming but from 
her ability to handle it in a way that came into conflict with the computer culture she had entered.
Lisa wants to manipulate computer language the way she works with words as she writes a poem. 
There, she says, she ”feels her way from one word to another,” sculpting the whole. When she 
writes poetry, Lisa experiences language as transparent; she knows where all the elements are at 
every point in the development of her ideas. She wants her relationship to computer language to 
be similarly transparent. When she builds large programs she prefers to write her own smaller 
”building block” procedures even though she could use prepackaged ones from a program library; 
she resents the latter’s opacity. Her teachers chide her, insisting that her demand for transparency 
is making her work more difficult; Lisa perseveres, insisting that this is what it takes for her to feel 
comfortable with computers.

Two months into the programming course, Lisa’s efforts to succeed were no longer directed 
towards trying to feel comfortable. She had been told that the ”right way” to do things was to 
control a program through planning and black-boxing, the technique that lets you exploit opacity 
to plan something large without knowing in advance how the details will be managed. Lisa recog-
nized the value of these techniques -- for someone else. She struggled against using them as the 
starting points for her learning. Lisa ended up abandoning the fight, doing things ”their way,” and 
accepting the inevitable alienation from her work. It was at this point that she called her efforts to 
become ”another kind of person with the machine” her ”not-me strategy,” and began to insist that 
the computer is ”just a tool.” ”It’s nothing much,” she said, ”just a tool.”

A classmate, Robin, is a pianist. Robin explains that she masters her music by perfecting the 
smallest ”little bits of pieces” and then building up. She cannot progress until she understands the 
details of each small part. Robin is happiest when she uses this tried and true method with the 
computer, playing with small computational elements as though they were notes or musical phra-
ses. Like Lisa, she is frustrated with black-boxing or using prepackaged programs. She too was told 
her way was wrong: ”I told my teaching fellow I wanted to take it all apart, and he laughed at me. 
He said it was a waste of time, that you should just black box, that you shouldn’t confuse yourself 
with what was going on at that low level. ”

Lisa and Robin came to the programming course with anxieties about not ”belonging” (fearing 
that the computer belonged to male hackers who took the machines and made ”a world apart”), 



4

and their experiences in it only served to make matters worse.7Although imaginative and carefully 
designed, the Harvard course taught that there is only one right way to approach the computer, a 
way that emphasizes control through structure and planning. There are many virtues to this com-
putational approach (it certainly makes sense when dividing the labor on a large programming 
project), but Lisa and Robin have intellectual styles at war with it. Lisa says she has ”turned herself 
into a different kind of person” in order to perform, and Robin says she has learned to ”fake it.” 
Although both women are able to get good grades in their programming course, they represent 
casualties of this war. Both deny who they are in order to succeed.

In their response and their defense, Lisa and Robin are not alone. In a survey, 37 women mem-
bers of a local computer society included 17 who ”changed their style to suit the fashion” when 
they began to interact with the ”official” computer world. ”I got my wrists slapped enough times 
and I changed my ways,” says a college student for whom programming on her Macintosh was a 
private passion until she entered MIT. The cost of such ”wrist slapping” is high: On an individual 
level, talent is wasted, self image eroded. On the social level, the computer culture is narrowed.

Such casualties are unnecessary. The computer can be a partner in a great diversity of relation-
ships. The computer is an expressive medium that different people can make their own in their 
own way. But people who want to approach the computer in a ”noncanonical” style are rarely given 
the opportunity to do so. They are discouraged by the dominant computer culture, eloquently ex-
pressed in the ideology of the Harvard course. Like Lisa and Robin, they can pass a course or pass 
a test. They are not computer phobic, they don’t need to stay away because of fear or panic. But 
they are computer reticent. They want to stay away, because the computer has come to symbolize 
an alien way of thinking. They learn to get by. And they learn to keep a certain distance. One of its 
symptoms is the language with which they neutralize the computer as they deny the possibility of 
using it creatively. Recall how Lisa dismissed it as ”just a tool.”

These responses begin to show how discrimination in the computer culture takes the form of 
discrimination against epistemological orientations, most strikingly, against the approach prefer-
red by Lisa and Robin.

Style as substance

Lisa and Robin share a preferred strategy for organizing work and a particular manner of identi-
fying with computational objects. To capture the difference between them and their instructors, 
we describe a complex of attributes, an ”approach” to knowledge, that encompasses several dimen-
sions of difference. We isolate two approaches that serve its ideal types, theoretical prisms through 
which to see simplified projections of more complex realities. Lisa and Robin use a ”soft” approa-
ch, and the instructors in their course are encouraging them to use a ”hard” one.

Our culture tends to equate soft with feminine and feminine with unscientific and undis-
ciplined. Why use a term, soft, that may begin the discussion of difference with a devaluation? 
Because to refuse the word would be to accept the devaluation. Soft is a good word for a flexible 



5

and nonhierarchical style, open to the experience of a close connection with the object of study. 
Using it goes along with insisting on negotiation, relationship, and attachment as cognitive virtues. 
Our goal is the revaluation of traditionally denigrated categories. We do not argue that valuable 
thinking is not soft; we explore ways in which soft is a valid approach for men as well as women, 
in science its well as the arts.

Hard and soft are more than different approaches to computation. The phrase epistemological 
pluralism (rather than, for example, computational pluralism) underscores the generality of the 
issues. The computer forces general questions about intellectual style to reveal an everyday face. 
Even schoolroom differences in how children program computers raise issues that come up in a 
more abstract form in scholarly debates about scientific objectivity. The computer makes ideas 
about alternative scientific voices more concrete and therefore more appropriate because we can 
relate them, not only to the science of the scientists, but to our own thinking.

Observation of the soft approach to programming calls into question deeply entrenched as-
sumptions about the classification and value of different ways of knowing. It provides examples of 
the validity and power of concrete thinking in situations that are traditionally assumed to demand 
the abstract. It supports a perspective that encourages looking for psychological and intellectual 
development within, rather than beyond, the concrete and suggests the need for closer investiga-
tion of the diversity of ways in which the mind can use objects rather than the rules of logic to 
think with.

The ideal typical hard and soft approaches are each characterized by a cluster of attributes. 
Some involve organization of work (the hards prefer abstract thinking and systematic planning; 
the softs prefer a negotiational approach and concrete forms of reasoning); other attributes con-
cern the kind of relationship that the subject forms with computational objects. Hard mastery is 
characterized by a distanced stance, soft mastery by a closeness to objects.

Hard mastery is resonant with the logical and hierarchical elements of the traditional construc-
tion of ”scientific method.” Soft mastery has always had its place in the discourse of the arts and 
has always been glimpsed in the autobiographical writings of scientists. Only recently has it gained 
academic recognition as an integral element of scientific practice.8

When we say that hard and soft approaches are ideal types, we signal that individuals will 
seldom conform to either exactly, and that some will be so far from both that it is impossible to 
assign a type. In other words our contention is not that the attributes in a cluster are exactly cor-
related, but that each approach has internal coherency in the way that a stable culture is coherent. 
So for example, closeness to objects tends to support a concrete style of reasoning, a preference 
for using objects to think with, and a bias against the abstract formulae that maintain reason at a 
distance from its objects. Conversely, a distanced relationship with objects supports an analytic, 
rule- and plan-oriented style. Our theoretical conjecture is that degree of closeness to objects has 
developmental primacy; it comes first. The child forms a proximal or distant relationship to the 
world of things. The tendency to use the abstract and analytic or concrete and negotiational style 
of thinking follows.

But although closeness to objects favors contextual and associational styles of work, it does not 



6

exclude the possibility of using a hierarchical one. Planning is not always an expression of personal 
style. It can be acquired as a skill, sometimes because it is needed to get a job done, sometimes as 
a facade to hide rather than express individuality.

Thus, the elements of each cluster are not invariably associated with each other; still less are 
they invariably associated with gender.9 But in our observations of people learning to program 
we have found an association between gender and approach to programming. When people are 
free to explore programming without preconceptions about the ”right” way to do it, more women 
use soft approaches and more men hard approaches, although many men are alienated from the 
dominant engineering style and many women work creatively within it.10

Using clinical methods inspired by the Piagetian and psychoanalytic traditions, we built up 
case studies of children using computers in grade-school settings where they were encouraged 
to explore programming without preconceptions about the ”right way” to go about it. We took 
40 cases for which we had material both on individual personality and programming style. Of 20 
girls, 14 favored the soft approach; of 20 boys, there were four who followed this route. In case 
material on college students taking a first programming course, of the 15 women, nine were soft 
style programmers; of 15 men, four. What we say in this chapter about gender, programming, and 
intellectual style is based on the analysis of these cases. But we believe that what is most important 
is not any statistical association between gender and programming styles, but what lies behind the 
styles and behind the resistance of our intellectual culture to recognize and facilitate them both. 
In our culture, those who use hard approaches don’t simply share a style, they constitute an epis-
temological elite.

Here, we focus on the soft approach; the canonical style is well known and well defended. But 
implicitly, our discussion of soft approaches is a discussion of hard ones; it contributes to the de-
construction of the latter as the way to do things. It also situates it: the supervaluation of the hard 
approach owes much of its strength within computation to the support it gets in other intellectual 
domains. To state simplistically a position we shall elaborate in the following pages: ”Hard thin-
king” has been used to define logical thinking. And logical thinking has been given a privileged 
status that can be challenged only by developing a respectful understanding of other styles where 
logic is seen as a powerful instrument of thought but not as the ”law of thought.” In this view, ”lo-
gic is on tap, not on top.”

It is beyond the scope of this essay to spell out the multiple relationships between our definiti-
on of ”soft” and the large body of feminist writings on intellectual approaches. But we use the work 
of Gilligan and Keller to bring out the two most striking constituent elements of the soft approa-
ch. The negotiational and contextual element, which we call bricolage, recalls Gilligan’s material 
on moral reasoning. Then we look ”beyond bricolage” to a second element of the soft approach, 
underscored by Keller in her work on Barbara McClintock. This is a style of relating to objects, be 
they physical objects such as gears or chromosomes, or conceptual objects such as the elements of 
programming. Whereas bricolage is negotiational, this aspect of the soft approach is proximal, a 
closeness to objects.



7

Bricolage

Levi-Strauss used the idea of bricolage to contrast the analytic methodology of Western science 
with what he called a ”science of the concrete” in primitive societies.11 The bricoleur scientist does 
not move abstractly and hierarchically from axiom to theorem to corollary. Bricoleurs construct 
theories by arranging and rearranging, by negotiating and renegotiating with a set of well-known 
materials.

If we take Levi-Strauss’s description of the two scientific approaches as ideal types and divest 
them of his efforts to localize them culturally, we can see both in how people program computers. 
For some people, what is exciting about computers is working within a rule-driven system that 
can be mastered in a top-down, divide-and-conquer way. Their structured ”planner’s” approach, 
the approach being taught in the Harvard programming course, is validated by industry and the 
academy. It decrees that the ”right way” to solve a programming problem is to dissect it into sepa-
rate parts and design a set of modular solutions that will fit the parts into an intended whole. Some 
programmers work this way because their teachers or employers insist that they do. But for others, 
it is a preferred approach; to them, it seems natural to make a plan, divide the task, use modules 
and subprocedures.

Lisa and Robin offer examples of a very different style. They are not drawn to structured pro-
gramming; their work at the computer is marked by a desire to play with the elements of the 
program, to move them around almost as though they were material elements -- the words in a 
sentence, the notes on a keyboard, the elements of a collage.

While hierarchy and abstraction are valued by the structured programmers’ ”planner’s” aest-
hetic, bricoleur programmers, like Levi-Strauss’s bricoleur scientists, prefer negotiation and re-
arrangement of their materials. The bricoleur resembles the painter who stands back between 
brushstrokes, looks at the canvas, and only after this contemplation, decides what to do next. 
Bricoleurs use a mastery of associations and interactions. For planners, mistakes are missteps; 
bricoleurs use a navigation of midcourse corrections. For planners, a program is an instrument for 
premeditated control; bricoleurs have goals but set out to realize them in the spirit of a collabora-
tive venture with the machine. For planners, getting a program to work is like ”saying one’s piece”; 
for bricoleurs, it is more like a conversation than a monologue.

We introduced bricolage through the programming styles of college students Lisa and Robin. 
To consider it in finer detail, we look at the work of two 9-year-olds. In the spirit of Jean Piaget, we 
find that children’s thinking often allows particularly transparent access to processes that extend 
far beyond childhood.

Alex, 9 years old, a classic bricoleur, attends the Hennigan Elementary School in Boston, the 
scene of an experiment in using computers across the curriculum. There, students work with Logo 
programming and computer controlled Lego construction materials. The work is both frequent 
enough (at least an hour a day) and open-ended enough for differences in styles to emerge.

When working with Lego materials and motors, most children make a robot walk by atta-
ching wheels to a motor that makes them turn. They are seeing the wheels and the motor through 



8

abstract concepts of the way they work: the wheels roll, the motor turns. Alex goes a different 
route. He looks at the objects more concretely; that is, without the filter of abstractions. He turns 
the Lego wheels on their sides to make flat ”shoes” for his robot and harnesses one of the motor’s 
most concrete features: the fact that it vibrates. As anyone who has worked with machinery knows, 
when a machine vibrates it tends to ”travel,” something normally to be avoided. When Alex ran 
into this phenomenon, his response was ingenious. He doesn’t use the motor to make anything 
”turn,” but to make his robot (greatly stabilized by its flat ”wheel shoes”) vibrate and thus ”travel.” 
When Alex programs, he likes to keep things similarly concrete.

Learners are usually introduced to Logo programming through the ”turtle,” an icon on a com-
puter screen which can be commanded to move around the screen and leave a trace as it goes. So, 
for example, the turtle can be told to move forward a hundred steps and turn ninety degrees with 
the commands FORWARD 100 RIGHT 90. Four such commands would have the turtle drawing 
a square. Programming occurs when a set of commands, such as REPEAT 4 [FORWARD 100 
RIGHT 90], are defined as a procedure: TO SQUARE. Alternatively, a subprocedure TO SIDE 
might be defined and repeated four times.

Alex wanted to draw a skeleton. Structured programming views a computer program as a 
hierarchical sequence. Thus, a structured program TO DRAW SKELETON might be made up of four 
subprocedures: TO HEAD, TO BODY, TO ARMS, TO LEGS, just as TO SQUARE could be built 
up from repetitions of a subprocedure TO SIDE. But Alex rebels against dividing his skeleton 
program into subprocedures; his program inserts bones one by one, marking the place for inser-
tion with repetitions of instructions. One of the reasons often given for using subprocedures is 
economy in the number of instructions. Alex explains that doing it his way was ”worth the extra 
typing” because the phrase repetition gave him a ”better sense of where I am in the pattern” of 
the program. He had considered the structured approach but prefers his own style for aesthetic 
reasons: ”It has rhythm,” he says. In his opinion, using subprocedures for parts of the skeleton is 
too arbitrary and preemptive, one might say abstract. ”It makes you decide how to divide up the 
body, and perhaps you would change your mind about what goes together with what. Like, I would 
rather think about the two hands together instead of each hand with the arms.”12

In his own way, Alex has resisted the pressure to believe the general superior to the specific 
or the abstract superior to the concrete. For Alex, thinking about hands as a subset of arms is too 
far away from the reality of real hands, just as taking a motor that was most striking as a vibrating 
machine and using it to turn wheels in the standard fashion was too far away from the real motor 
he had before him. While the structured programmer starts with a clear plan defined in abstract 
terms, Alex lets the product emerge through a negotiation between himself and his material. In 
cooking, this would be the style of chefs who don’t follow recipes but a series of decisions made as 
a function of how things taste. Or we might think of sculptors who let themselves be guided by the 
qualities of the stone that reveal themselves as the work progresses.

The turtle that Alex used to draw a skeleton is the best known Logo object, but there are others. 
For example, sprites are turtles that can be set in motion. Once you give a sprite a speed and a 
heading, it moves with that state of uniform motion until something is done to change it, just like 



9

an object obeying Newton’s first law.
Anne, whose favorite hobby is painting, has become expert at using sprites in programs that 

produce striking visual effects.13 In one, a flock of birds (each of them built from a sprite) flies 
through the sky, disappears over the horizon, and reappears some other place and time. If all the 
birds were red, then it would be easy to make them disappear and reappear. The command SET-
COLOR :INVISIBLE would get rid of them and SETCOLOR :RED would make them reappear. 
But Anne wants the birds to have different colors, and so making the birds reappear with their 
original color is more complicated.

A classical method for achieving this end calls for an algebraic style of thinking: You make the 
program store each bird’s original color as the value of a variable, then you change all colors to in-
visible and recall the appropriate variable when the bird is to reappear. Anne knows how to use this 
algorithmic method, but prefers one that allows her to turn programming into the manipulation 
of familiar objects. As Anne programs, she uses analogies with traditional art materials. When you 
want to hide something on a canvas, you paint it out, you cover it over with something that looks 
like the background. Anne uses this technique to solve her programming problem. She lets each 
bird keep its color, but she makes her program ”hide” it by placing a screen over it. Anne designs a 
sprite that will screen the bird when she doesn’t want it seen, a sky-colored screen that makes the 
bird disappear. Anne is programming a computer, but she is thinking like a painter.

”Thinking like a painter” does not prevent Anne from making a significant technical innovati-
on in the context of her fourth-grade computer culture. She is familiar with the idea of using two 
sprites to form a compound object. Her classmates and teachers have always done this by putting 
the sprites side by side. Anne’s program is like theirs in using two sprites, one for the screen, one 
for the bird. But she places them on top of each other so that they occupy the same space. Instead 
of thinking of compound objects as a way of getting a picture to be bigger, she thinks of compound 
objects as a way of getting sprites to exhibit a greater complexity of behavior, an altogether more 
subtle concept.

Thus, Anne’s level of technical expertise is as dazzling in its manipulation of ideas as in its vi-
sual effects. She has become familiar with the idea of data structures by inventing a new one -- her 
”screened bird.” She has learned her way around a set of mathematical ideas through manipulating 
angles, shapes, rates, and coordinates in her program. As a bricoleur, her path into this technical 
knowledge is not through structural design, but through the pleasures of letting effects emerge.

In describing bricoleur programmers, we have made analogies to sculptors, cooks, and pain-
ters. Bricoleurs are also like writers who don’t use an outline but start with one idea, associate to 
another, and find a connection with a third. In the end, an essay ”grown” through negotiation and 
association is not necessarily any less elegant or easy to read than one filled in from an outline, just 
as the final program produced by a bricoleur can be as elegant and organized as one written with 
the top-down approach.

Anne’s case makes it clear that the difference between planners and bricoleurs is not in quality 
of product, it is in the process of creating it. As in the case of Alex, Anne does not write her pro-
gram in ”sections” that are assembled into a product. She makes a simple working program and 



10

shapes it gradually by successive modifications. She starts with a single black bird. She makes it fly. 
She gives it color. Each step is a small modification to a working program that she has in hand. If a 
change does not work, she undoes it with another small change. She ”sculpts.” At each stage of the 
process, she has a fully working program, not a part but a version of the final product.

Anne is perfectly capable of producing a program with well-delineated subprocedures, alt-
hough her way of creating them has little in common with the planner.14 Devotees of structured 
programming would frown on Anne’s style. From their point of view, she should design a com-
putational object (for example, her bird) with all the required qualities built into it. She should 
specify, in advance, what signals will cause it to change color, disappear, reappear, and fly. One 
could then forget about ”how the bird works.” In engineer’s jargon, it could be treated as a black 
box. Anne’s work dramatizes the feature of bricolage that was so salient for Lisa and Robin: the 
desire for transparency.

With a structured programming style, one usually does not feel comfortable with a construct 
until it is thoroughly black-boxed, with both its inner workings and all traces of the perhaps messy 
process of its construction hidden from view. Many programmers feel a sense of power when they 
use black-boxed programs, perhaps because of the thought that others might take them up exactly 
as frozen.

But black-boxing makes other programmers nervous rather than exultant. Anne did not want 
to package her constructs into opaque containers. Like Lisa and Robin, she enjoys keeping open 
the possibility of renegotiating their exact form. And this means staying in touch with that form 
at all times. When programming, bricoleurs tend to prefer the transparent style, planners the opa-
que, but the program’s authorship is a critical variable in this preference. Planners want to bring 
their own programs to a point where they can be black-boxed and made opaque, while bricoleurs 
prefer to keep them transparent. But when dealing with programs made by others, the situation is 
reversed. Now, the bricoleurs are happy to get to know a new object by interacting with it, learning 
about it through its behavior the way you would learn about a person, while the planners usually 
find this intolerable. Their more analytic approach demands knowing how the program works 
with a kind of assurance that can only come from transparent understanding, from dissection and 
demonstration.

Do programmers ”graduate” from bricolage when they develop greater expertise? Will Anne 
become a structure programmer in junior high? Our observations suggest that, with experience, 
bricoleurs reap the benefits of their long explorations, so that they may appear more ”decisive” and 
like planners when they program on familiar terrain. And of course, they get better at ”faking it.” 
But the negotiating style resurfaces when they confront something challenging or are asked to try 
something new. Bricolage is a way to organize work. It is not a stage in a progression to a superior 
form. Indeed, there is a culture of adult programming virtuosos, the hacker culture, that would re-
cognize many elements of the bricolage style as their own. And interviews with graduate students 
in computer science turned up highly skilled bricoleurs, most of them aware that their style was 
”countercultural.”

In the case of computation, the existence of the countercultural style challenges the idea of one 



11

privileged, ”mature” approach to problems. This challenge is supported by countercultural styles 
in other domains, for example, those observed by Gilligan in the domain of moral reasoning.

Gilligan’s work presents us with two moral voices. We can hear both in children’s responses to 
classical examples of moral dilemmas. When confronted by the story of Heinz, who must decide 
whether to steal a drug to save a life, 11-year-old Jake sees the dilemma as ”sort of like a math 
problem with humans” (Gilligan, 1982, p. 26). He sets it up as an equation and arrives at what he 
believes is the universal response: Heinz should steal the drug because a human life is worth much 
more than money. Eleven-year-old Amy takes an approach in which we see elements of bricolage. 
While Jake accepted the abstractly given problem as a quantitative comparison of two evils, Amy 
looks at the problem setting in concrete terms, breaks the restrictive formal frame of the given 
problem, and introduces a set of new elements. These elements include the druggist as a concrete 
human being who probably has a wife of his own and feelings about her. Amy proposes that Heinz 
talk things over with the druggist, who surely will not want anyone to die.

In Gilligan’s description of Jake, justice was like a mathematical principle. It resembled the 
structured programmer’s black box. To solve a problem, you set up the right algorithm, the right 
box, you crank the handle, and the answer comes out. Amy’s style of reasoning required her to stay 
in touch with the inner workings of her arguments, with the relationships and possibly shifting 
alliances of a group of actors. Amy’s resemblance to the programmers Alex and Anne is striking. 
They are all negotiators, stay close to their materials, and require transparency as they arrange and 
rearrange them. Despite Anne’s high level of achievement, theorists of structured programming 
would criticize her style for the same kinds of reasons that Lawrence Kohlberg would classify the 
impressively articular Amy at a lower intellectual level than Jake. In both cases, criticism would 
center on the fact that neither of the two young women is prepared to take the final step to abstrac-
tion.

Kohlberg saw moral development as a sequence of stages that move from judging rightness by 
one’s immediate feelings to judging rightness by the application of absolute principles. Between 
egocentrism and the Kantian imperative lie intermediate stages of reasoning based on balancing 
and assessing the consequences of actions for individuals. Gilligan finds many adult women spea-
king as did Amy. In Kohlberg’s terms, they are ”blocked” at this intermediate level: Instead of 
looking to universal principles in making their decisions, they consider concrete situations. Gil-
ligan uses her observations to reject Kohlberg’s theory, particularly its positing of a determinate 
end-point to development.15 If one branch of the development of moral reasoning moves towards 
the primacy of ”justice,” of the formal and analytic, Gilligan insists on equal respect for a different 
branch of development which leads toward increasingly sophisticated ways of thinking about mo-
rality in concrete terms of care through relationship and connection.

In making the analogy between Amy and Anne, we shift the emphasis of Gilligan’s analysis of 
the ”different voice.” Is her work about morality or epistemology? Gilligan is certainly concerned 
with both morality and epistemology when she says: ”[for women] the moral problem arises from 
conflicting responsibilities rather than from competing rights and requires for its resolution a 
mode of thinking that is contextual and narrative rather than formal and abstract” (Gilligan, 1982, 



12

p. 19). But her language expresses a priority, a primary concern with the character of the morality 
which, as she says, requires a certain mode of thinking. Our concern is with the mode of thinking.

Gilligan’s priority shows itself in recent writing where she redescribes Kohlberg’s theory as 
being about only one side of moral reasoning. In this view, Kohlberg is talking about justice, thus 
leaving the other side of morality, namely care, to her (Gilligan, 1988).

This compromise, which splits off the content of moral judgment, blunts the force of Gilligan’s 
observations as a challenge to something more general than moral reasoning. Kohlberg’s theory of 
the development of moral judgment mirrors Piaget’s theory of the development of intelligence per 
se. Both express the value-laden perspective on intellectual growth that has dominated Western 
philosophy. Piaget sees a progression from egocentric beginnings to a final, ”formal stage” when 
propositional logic and the hypothetico-deductive method ”liberate” intelligence from the need 
for concrete situations to mediate thinking (Piaget & Inhelder, 1958). In this vision, mature thin-
king is abstract thinking. We disagree: for us, formal reasoning is not a stage, but a style.

Although Piaget would place the ”concrete” Anne squarely in the preformal stage, her level 
of achievement undermines standard assumptions about the privileged status of the analytic and 
formal. And it undermines standard assumptions about the ”objective.” There is little distance 
between Anne and her objects. This aspect of Anne’s work -- her close, almost tactile involvement 
with the sprites -- enables us to make a bridge between styles of programming and styles, this time, 
not of moral discourse, but of doing science. The fact of diverse styles of expert programming 
supports the idea that there can be different but equal voices even where the formal has traditio-
nally appeared as almost definitionally supreme: logic, mathematics, and the ”hard” sciences. And 
this aspect of Anne’s work bring us to the second constituent element of the soft approach. We go 
”beyond bricolage” to the question of closeness to the object.

Beyond bricolage: closeness to the object

There is a tradition of scientific epistemology that sees the essence of science in objectivity and 
the essence of objectivity in a distanced relationship with the object of study. Feminist scholars 
have related this notion of objectivity to the construction of gender: objectivity in the sense of 
distancing the self from the object of study is culturally constructed as male, just as male is cultu-
rally constructed as distanced and objective. In a moving case study of a scientist at work, Keller 
demonstrates that this is not the only possible stance. She sees another in the work of geneticist 
Barbara McClintock, who talked about her relationship to objects of scientific study as one of pro-
ximity rather than distance. For McClintock, the practice of science was essentially a conversation 
with her materials. ”Over and over again,” says Keller, McClintock ”tells us one must have the time 
to look, the patience to ’hear what the material has to say to you,’ the openness to ’let it come to 
you.’ Above all, one must have a ’feeling for the organism.’ ” 16

McClintock said that the more she worked with neurospora chromosomes (so small that ot-
hers had been unable to identify them), ”the bigger [they] got, and when I was really working 



13

with them I wasn’t outside, I was down there. I was part of the system. I actually felt as if I were 
right down there and these were my friends . . . As you look at these things, they become part of 
you and you forget yourself ” (Keller, 1983, p. 117). McClintock came into increasing conflict with 
the formal, ”hard” methods of molecular biology. McClintock was recognized by the scientific 
establishment, indeed she was awarded the Nobel Prize, only when the formal approach came 
independently and much later to conclusions that she had derived from her ”softer” investigations.

When we study programmers at work we see differences reminiscent of the two approaches to 
genetics. Alex and Anne relate to computational objects much as McClintock related to chromo-
somes, while many of their peers, like the mainstream molecular biologists, take a more distant 
approach. Anne psychologically places herself in the space of her objects. She experiences her 
screens and birds as tangible, sensuous, and tactile. She is down there, in with the sprites, playing 
with them like objects in a collage. Or consider the computer science graduate student Lorraine, 
who explains how she uses ”thinking about how the program feels like inside” to break through 
difficult problems. ”For appearances sake,” she wants to ”look like I’m doing what everyone else 
is doing, but I’m doing that with only a small part of my mind. The rest of me is imagining what 
the components feel like. It’s like doing my pottery.” This is in sharp contrast to structured pro-
grammers who use their favorite device of black-boxing as a way to maintain distance. The idea 
of the black box, designed not to be touched, mediates between the structured (planning) style of 
organizing work and their relationship to computational objects. Structured programmers are not 
among the sprites, they act on the sprites.

An example from outside of computation clarifies the role of identification with objects as a 
way of appropriating formal systems. Children using gears illustrate how closeness to objects al-
lows alternatives to abstract thinking.

At the Hennigan School where we met Alex, many students work as he does with a Lego 
construction kit with which they can build mechanisms and write computer programs to make 
them function. Sooner or later in building their objects, the children run into the need for gears.17

The motors in the construction set turn at a high speed with low torque. A car built by atta-
ching these motors directly to the wheels will go very fast but will be so underpowered that the 
slightest slope or obstruction will cause it to stall. The solution to the problem with Lego cars is 
the same as that adopted by designers of real cars: use gears. But in order to use them effectively, 
children need to understand something about gear ratios. Contrary to their teachers’ expectations, 
the girls in this project did extremely well, both in the quality of their work with the gears and in 
their performance on a test of underlying principles.18

If a small gear drives a larger gear, the larger gear will turn more slowly and with greater tor-
que. It is the relative and not the absolute size of the two gears that counts. But when we interview 
children, we find that some of them reason as if the size of only one gear matters, as if they were 
following a set of rules such as ”large gears are slow and strong” and ”small gears are fast and weak.” 
Without the notion of relative size, such rules fail. Other children, among them the girls who 
excelled, are less articulate and more physical in their explanations. They squirm and twist their 
bodies as they try to explain how they figure things out. And they get the right answer.



14

Theorists who look at intellectual development as the acquisition of increasingly sophistica-
ted rules would say that children run into problems if the rules they have built are not yet good 
enough.19 But armed with the idea of ”closeness to objects,” we can consider a different kind of 
theory. Perhaps the girls who did so well did not have better rules, but a tendency to see things in 
terms of relationships rather than properties. Perhaps the girls had easy access to a style of reaso-
ning which allowed them to imagine themselves ”inside the system.” They used a relationship to 
the gears to help them think through a problem.

This kind of ”reasoning from within” may not be adequate for all problems about gears, but 
for the kind of problem encountered by the children in our project, it was not only adequate, but 
much less prone to the errors produced by a too-simple set of rules. Relational thinking puts you 
at an advantage: You don’t suffer disaster if the rule isn’t exactly right.

This way of thinking about girls and gears is supported by the hypothesis, familiar in re-
cent writing about women, that boys are more comfortable with boundaries and girls with at-
tachments.20 This notion, drawn from accounts of development in the psychoanalytic tradition 
of object relations, stresses that for girls, identity formation takes place in a context of greater 
continuity than for boys.21 The girl’s sexual identification is with the mother, with whom she is 
encouraged to maintain a close relationship. Girls don’t need to define themselves through a denial 
of the early, closely bonded relationship with the mother to the same extent as boys. They grow up 
with a stronger basis for experiencing the needs and desires of another as their own. Since girls do 
not have to renounce the pleasures of attachment to the mother as sharply as do boys, it is easier 
for them to play with the pleasures of closeness to other objects as well.

For boys, the separation from the mother is sharper, because in a certain sense, it happens 
twice, first in the rupture of the earliest bonded relationship, then in the course of the Oedipal 
struggle. The double separation translates into a lifelong tendency to be most comfortable with 
clear boundaries between self and nonself. It makes distanced, ”objective” relationships feel like 
safe, approved ground.

The contemptuous comment of one fourth-grade boy who overheard a classmate talking about 
”being a sprite” when he programs can be interpreted from this point of view. ”That’s baby talk,” 
he said. ”I am not in the computer. I’m just making things happen there.” The remark reflects an 
insistence on boundaries and the development of a world view that will fall easily into line with the 
canonical, objective science whose male meanings Keller has delineated.

The object relations school of psychoanalysis focuses on the way development progresses by a 
process of internalization of the things and people of the world. They come to live within us; they 
become our objects to think with. When psychoanalysts talk about ”objects,” they usually mean 
people.22 Keller, in her work on McClintock, has explicitly extended the idea of closeness to the 
object to elaborate a theory of relationships to nature. Here we further extend this idea to relation-
ships with specific artifacts. In doing so, we find ourselves addressing questions more familiar in 
discussions about relationships between people than between people and things. What kinds of 
individuals choose to manipulate or make what kinds of objects, and what kinds of relationships 
follow? From this perspective, it is not enough to ask whether individuals ”like” or ”don’t like” to 



15

program, because that puts the question on too high a level of generalization. ”Liking” to program 
depends on forging an appropriate relationship with a computational object that ”fits.”

The choice of a computational object that fits has several elements. First is the choice among 
objects offered by the system. Even people who like to be close to objects don’t all like to be close 
to the same ones. For example, in the version of Logo used by Anne there was a choice between 
sprites and turtles. Some prefer the turtle, its static nature, the fineness in the way it draws. For 
others, these same qualities are reasons to reject the turtle as constraining, even unpleasant. They 
prefer the sprites, which move with flash and speed.

Second, when an object has been chosen, it can be thought of in different ways. As computa-
tional objects, turtles and sprites stand on the boundary between the physical and the abstract. In 
some ways both are like physical objects. You can see them, move them, put one on top of another. 
But at the same time, they are abstract and mathematical. Ambivalent in their nature, computatio-
nal objects can be approached in different ways. Hard-approach programmers treat a sprite more 
like an abstract entity -- a Newtonian particle -- while soft-approach programmers treat it more 
like a physical object -- a dab of paint or a cardboard cutout.

Because of this ambivalence, computational objects offer a great deal to those whose approach 
requires a close relationship to an object experienced as tactile and concrete. Computational ob-
jects offer a physical path of access to the world of formal systems. Some people are comfortable 
with mathematical experiences that manipulate symbols on quadrille-ruled paper. But for many 
the ambivalent nature of computational objects means quite simply a first access to mathematics.23

A third dimension of difference in people’s choice of computational object has to do with dif-
ferences in the degree to which these objects are anthropomorphized. The anthropomorphization 
extends from the computational objects (”That sprite doesn’t want to do what I tell it now”) to the 
computer itself. Anne, like many soft-approach programmers, has an easier time working with the 
computer if she anthropomorphizes it. She has no doubt that computers have psychologies: They 
”think” but can’t really have ”emotions.” She believes, however, that the computer has preferences. 
”He would like it if you did a pretty program.” And when it comes to technical things, Anne as-
sumes the computer has an aesthetic: ”I don’t know if he would rather have the program be very 
complicated or very simple.”

We know and she knows that the computer is ”just a machine.” But those who want to treat 
it in certain ways ”as if ” it were a person are able to see the machine as sufficiently alive for it to 
serve as a companion, if only a limited one. When the computer ”moves the queen” in a game of 
chess, it tempts us to think of it as having intentions. And programs within a computer system 
interact with each other in a way that supports models of the computer as composed of ”agents” in 
communication. Anthropomorphization, both of a computer system and its parts, does not follow 
from lack of technical expertise. Computer scientists talk about a concept such as recursion with 
anthropomorphic metaphors: one agent ”calls up” another, ”wakes up” another, and ”passes on a 
job.” They sometimes even refer to the agents within a computer system as citizens of a ”society of 
mind” (Minsky, 1987; Papert, 1980c).

Very young children are in fact uncertain whether computers should be counted as alive or not 



16

alive, and argue the question hotly, debating the computer’s aliveness on the basis of its psychology, 
intentions, consciousness, and feelings (Turkle, 1984, esp. chap. I ). By age 10, most are sure that 
the computer is not actually alive. But at this point, some children, like Anne, continue to behave 
with and talk about the computer as if it were sentient. They brag that it is helping them or comp-
lain that it isn’t. In this, they are not showing confusion about biology. They do not think that the 
computer is alive the way an animal is. But it has a ”kind of life,” the kind of life appropriate to a 
computer. This is a psychological life.

Other children have a very different reaction. Once they are no longer perplexed by whet-
her the machine might actually be biologically alive, they shy away from anthropomorphization. 
When they complain about the computer they do so in objective terms: It is too slow, it doesn’t 
have enough memory. Talking about the computer usually means ”talking shop” about technical 
details.

Lise Motherwell, a researcher at the Hennigan School, did an intensive study of eight fifth-
grade students in a computer-rich classroom (Motherwell, 1988). She found she could capture 
children’s stances towards the anthropomorphization of the computer by distinguishing two sty-
les: relational and environmental. Relational children treat the computer as much like a person as 
they can get away with, while environmental children treat it like a thing. Three out of the four 
girls in her study were relational; three out of the four boys environmental. Motherwell’s research 
supports our observation that children who anthropomorphize the computer are no less techni-
cally sophisticated than those who do not. The degree of anthropomorphization does not reflect 
expertise but psychological approach. Motherwell’s research also supports our association of pro-
gramming style and gender.

Looking at Motherwell’s data through our theoretical prism, it is as though, once they have 
placed the computer in the not-alive category, the boys tend to settle with relief into treating it as 
a thing. This helps them to appropriate it through a relationship that involves distance, objectivity, 
and control. And it is as though the girls, once having settled the question of biological aliveness, 
get more comfortable with the machine by making it an interactive partner. In the computer they 
have found something in the domain of formal systems to which they can relate with informality.

The conventional route into formal systems, through the manipulation of abstract symbols, 
closes doors that the computer can open. The computer, with its graphics, its sounds, its text and 
animation, can provide a port of entry for people whose chief ways of relating to the world are 
through movement, intuition, visual impression, the power of words and associations. And it can 
provide a privileged point of entry for people whose mode of approach is through a close, bodily 
identification with the world of ideas or those who appropriate through anthropomorphization. 
The computational object, on the border between the idea and a physical object, offers new pos-
sibilities.



17

Closeness and conflicts

Different intellectual perspectives provide suggestive hypotheses about why women tend to 
adopt the approaches that we have clustered under the rubric soft. Some perspectives, such as the 
psychoanalytic account, place the roots of difference at an early stage of human development. If 
the earliest and most compelling experiences of merging are with the mother, the process of dif-
ferentiation takes on gender meanings. Experiences where boundaries are not clear are associated 
with something female. Differentiation and delineation are male.

The psychoanalytic focus on early experience does not necessarily undermine a more socio-
logical perspective, where the emphasis is on our culture’s sharp gender division of parenting 
roles and on the very different socializations of men and women. As a birthday gift, a boy receives 
toy tanks and soldiers; a girl receives dolls, presented to her, not as objects to command, but as 
children to nurture. In our culture, girls are taught negotiation, compromise, and the capacity for 
intimacy as social virtues, while models of male behavior stress decisiveness, cool impartiality, and 
the imposition of will. It would not be surprising if women felt more comfortable, more ”themsel-
ves,” with negotiation and compromise among elements of thought, and men preferred to make 
decisive plans and impose principles on a separate reality.

From its very foundations, objectivity in science was metaphorically engaged with the langu-
age of male domination and female submission. Francis Bacon used the image of the male scientist 
putting the female nature ”on the rack” (Keller, 1985, pp. 33 ff.; Merchant, 1980; Haraway, 1979, pp. 
206-237). Objectivity has been constructed, not only in terms of the distance of the knower from 
nature, but in terms of an aggressive relationship towards it (or rather towards her). And from its 
very foundations, objectivity in science has been engaged with the language of power, not only 
over nature, but over people and organizations. Such associations have spread beyond professio-
nal scientific communities; aggression has become part of a widespread cultural understanding of 
what it means to behave in a scientific way. Its hard methods are expected to involve ”demolishing” 
an argument and ”knocking it down” to size. Here the object of the blows is not a female nature 
but a male scientific opponent. If science is first a rape, it is then a duel.

In either case, it is not surprising that many women feel uncomfortable both with science and 
with ways of thinking that have been associated with it. The traditional discourse of computation 
has not been exempt from these connotations. Programs and operating systems are ”crashed” and 
”killed.” We write this chapter on a computer whose operating system asks if it should ”abort” an 
instruction it cannot ”execute.” This is a style of discourse that few women fail to note.

Such observations about language, power, and the genderization of scientific discourse sug-
gest pressures that push women to look for alternative approaches to knowing, and this means 
pressure to adopt soft approaches. A psychoanalytic perspective might suggest that women have 
a predisposition towards a soft approach. And then, the social construction of science reinforces 
this preference. Science waves its flag as ”hard” in a way that repels women. This means that, in our 
culture, women are too often faced with the not necessarily conscious choice of putting themselves 
at odds either with the cultural meanings of being a scientist or with the cultural constructions of 



18

being a woman.
Such choices do not have to be made in an all-or-nothing way. The ”not-me” strategy we men-

tioned earlier anticipated a phenomenon of costly partial surrender. Women who enter centers of 
power give eloquent testimony, not only to the pressure, but to the seduction of having achieved 
the right to use the male discourse that predominates there. And they also speak to the conflict 
that this engenders, a kind of conflict that considerably complicates our story of how women ap-
propriate technology.

We have suggested that many women have a preference for attachment and relationship with 
technological objects as a means of appropriating them -- but we have also pointed to the asso-
ciation of these objects with a construction of the male that stresses aggression, domination, and 
competition. This construction of technology may lead to a conflict between a close encounter 
with technology and women’s image of themselves as women. Such a conflict is apparent when we 
look at women and computers.

When women neutralize the computer as ”just a tool,” it is more than a way of withdrawing 
because of a lack of authenticity in style of approach. Insisting that the computer is just a tool is one 
way to declare that what is most important about being a person (and a woman) is incompatible 
with close relationships to technology.

When Lisa first found herself doing well in her programming course, she found it ”scary,” 
because she felt she needed to protect herself from the idea of ”being a computer science type.” In 
high school, Lisa saw young men around her turning to computers as a way to avoid people: ”They 
took the computers and made a world apart.” Lisa describes herself as ”turning off ” her natural 
abilities in mathematics that would have led her to the computer. ”I didn’t care if I was good at 
it. I wanted to work in worlds where languages had moods and connected you with people.” And 
although Robin had gone through most of her life as a musician practicing piano eight hours a 
day, she too had fears about ”guys who established relationships” with the computer. ”To me, it 
sounds gross to talk about establishing a relationship with the computer. I don’t like establishing 
relationships with machines. Relationships are for people.”

In the vehemence with which many women insist on the computer’s neutrality, on its being 
nothing more than a mere tool, there is something more than alienation of culture and style. Many 
women are fighting against an experience of the computer as psychologically gripping. They are 
fighting against an element of their soft approach. For some, it can be because they want to ”be-
long” to the dominant computer culture. Lorraine, who programs by imagining what ”the compo-
nents feel like,” ends her description of her programming style by adding, ”Keep this anonymous. 
I know it sounds stupid.” But for others, their experience of closeness to the object is a source of 
conflict.

When Lisa began programming, she saw herself as communicating with the computer, but the 
metaphor soon distressed her. ”The computer isn’t a living being, and when I think about commu-
nicating with it, well, that’s wrong. There’s a certain amount of feeling involved in the idea of com-
munication, and I was looking for that from the computer.” She looked at it, and she frightened 
herself. ”It was horrible. I was becoming involved with a thing. I identified with how the computer 



19

was going through things.”
Lisa, like the soft-approach programmer Anne, placed herself in the space of the computatio-

nal objects she worked with and was prone to anthropomorphization, responding to the computer 
as though it had (at least) an intellectual personality. In Lisa’s case, her own style came to offend 
her. As a programmer with a soft approach to the discipline, she rebelled against where her style 
had led her, because it had led her to what she experienced as a too-close relationship with a ma-
chine.

Carol Gilligan talks about the ”hierarchy and the web” as metaphors to describe the different 
ways in which men and women see their worlds (Gilligan, 1982, p. 62). Men see a hierarchy of 
autonomous positions. Women see a web of interconnections among people. Men can be with the 
computer, content that it leaves them alone, even isolated, within a larger organization. When wo-
men see computers demanding separation from others, they perceive the machines as dangerous. 
They use metaphors from their programming classes to frame a view of people as what computers 
are not. So, for example, Robin says that people have ”great flashes of abstract thought without any 
logical sequence before it. If you tried to do that with a computer, it would tell you it’s a system 
error or illegal!” Lisa boils down what computers can’t do to a starker form: They cannot love.

I suppose if you look at the physical machinery of the computer mind, it is analogous to the 
human mind. But the saving grace, the difference, is emotion. That’s the line you can draw. That’s 
where you say, ”This thing may be able to do something like thinking, but it can’t love anybody.”

The computer presence has provoked a ”romantic reaction” in our culture.24 As people take 
computers seriously as simulated mind, many are in conflict with the mechanistic image that is 
reflected back to them in the mirror of the machine. They define the specificity of people in terms 
of what computers cannot do. Simulated thinking may be thinking, but simulated love is never 
love. Women express this sentiment with particular urgency. We believe this is because a conflict 
fuels their conviction. A comfortable style of thinking would have them get close to the objects of 
thought. The computer offers them objects of thought. But the closer they get to this machine, the 
more anxious they feel. The more they become involved with the computer, the more they insist 
that it is only a neutral tool. A way out of the impasse would require profound change in the cul-
ture that surrounds the computer tool. If the computer is a tool, and of course it is, is it more like 
a hammer or more like a harpsichord?

The musician Robin is not distressed by her close relationship with her piano. A woman who 
finds attachment to the computer ”unnatural” is not upset by her passion for the beautiful, hea-
vy antique ink pens she uses to write. We infer that, if Lisa had been in music school, she would 
not experience as threatening her sense of communicating with her instrument or her emotional 
involvement with it. Music students live in a culture that, over time, has slowly grown a language 
and models for close relationships with music machines. The harpsichord, like the visual artists’ 
pencils, brushes, and paints, is ”just a tool.” And yet we understand that artists’ encounters with 
these can (and indeed, will most probably) be close, sensuous, and relational. And that artists will 
develop highly personal styles of working with them.

The development of a new computer culture would require more than technological progress 



20

and more than environments where there is permission to work with highly personal approaches. 
It would require a new and softer construction of the technological, with a new set of intellectual 
and emotional values more like those we apply to harpsichords than hammers.25 If computers are 
really the tools we use to write, to design, to play with ideas and shapes and images, they should 
not be addressed with the language of desktop calculators. Moving out of the impasse also would 
require the reconstruction of our cultural assumptions about hard logic as the ”law” of thought. 
Addressing this question brings us full circle to where we began, with the assertion that epistemo-
logical pluralism is a necessary condition for a more inclusive computer culture.

Roadblocks and openings for change

Achieving epistemological pluralism is no small thing. It requires calling into question, not simply 
computational practices, but dominant models of intellectual development and the rarely challen-
ged assumption that rules and logic are the highest form of reason. Anne was able to escape the 
damaging effects of these models because, at her age, she was not expected even by the most com-
mitted Piagetian to have achieved the ”formal stage” -- and at the stage of ”concrete operations,” 
bricolage can seem acceptable. But in many educational settings, even this would not have saved 
her; her work with the computer would have been taken by teachers as the opportunity to encou-
rage the development of ”more advanced” cognitive skills. She would have been given the message 
that her style of programming (and so, also, her style of thinking) was inadequate, that she was 
capable of something better, such as, ”the real thing.”

The message that she could do better would not necessarily lead someone like Anne to reject 
computers or ”do badly” with them on a technical level. We see many Annes following in the path 
of a Lisa or Robin. They respond to the dominant ethos of the computer culture by entering into 
an inauthentic relationship with the computer. This response can lead to a paradoxical reaction: 
frustrated bricoleurs appear at first sight to be extremely rigid ”planners.” Some turn to a ”cook-
book” approach -- as when, in third grade, we were told to divide fractions by turning ”the second 
fraction” upside down. When denied a chance to do their ”real thinking,” they turn to rules that do 
not require them to think at all. People like Lisa and Robin ”escape to conformity,” a reaction that 
muffles the manifestation of a significantly ”different voice” in computing. But that voice is there. 
Recall the graduate student Lorraine, who says she tries ”to look like I’m doing what everyone else 
is doing” in order to preserve ”appearances.” Her style is hidden beneath her efforts to fit in.

We have said that, in our culture, the structured, plan-oriented, abstract thinkers don’t only 
share a style but constitute an epistemological elite. Language such as ”pure science” and ”pure 
mathematics” implies that their superiority is achieved by filtering out the concrete, and this me-
ans a continual put-down of people like Lisa and Robin. But although this way of thinking is 
deeply entrenched, there is cause for measured optimism. We conclude by describing how one 
opening for change is coming from within the technological culture itself. It takes the form of a 
new emphasis on computational objects, which is making itself felt in domains as diverse as deba-



21

tes about which personal computers are the best and how to build artificial brains.
Its simplest manifestation is the fashion for using icons in controlling personal computers. 

Consider two ways of getting a computer to copy information -- for example, the text of a section 
of this chapter -- from one diskette to another. In a traditional computer operating system, this 
requires typing an instruction. In an iconic system, the same effect may be achieved by moving a 
screen symbol for the text on top of a screen symbol for the diskette. The current technology for 
the act of moving something on a screen falls short of what the computer industry expects to pro-
vide quite soon, but existing systems, such as the ”mouse” or touch-sensitive screen, already give a 
tactile sense that recalls Anne’s experience of programming as collage.

Even superficial use of icons is enough to transform the perception of the computer by people 
who are using it in computationally simple ways. For example, many writers who began to use 
computers reluctantly, as a necessary evil, are finding that warmer relationships are mediated by 
the icons, the mouse, and the cozier appearance of a Macintosh. And although these particular 
warmer relationships do not involve programming, their cultural influence means that the next 
generation people like Lisa and Robin will come to programming courses with a different sense of 
who ”owns” the computer.

But a multiplicity of technical methods doesn’t by itself lead to pluralism. It can simply lead 
to competition. This point has been recently dramatized by the terms of the competition between 
the IBM PC and the Apple Macintosh computers. Many have been party to heated conversations 
between those who argue the superiority of each. (In the IBM the typical interaction with the com-
puter is typing an instruction; in the Macintosh it is manipulating a screen object.) But when we 
understand the computer as a projective screen for different approaches to knowledge, we can lis-
ten to these conversations in a new way. Different people are comfortable with each system. When 
people fight about the IBM versus the Macintosh, what they are really trying to do is defend their 
cognitive style. And yet, the debate has both industry and consumers arguing in terms of whether 
IBM or Apple got it ”right.”

The Logo language allowed Anne and Alex to program in their own styles. But in many educa-
tional settings where Logo is defined as the computer language for children who have not reached 
the top stage in Piaget’s hierarchy, allowing even as sophisticated a thinker as Anne or as creative 
a thinker as Alex to use their styles would be bought at the cost of defining their intellects as im-
mature. Similarly, the very success of the Macintosh has often been cast in terms that reflect the 
elitism of the dominant computer culture. The Macintosh iconic interface has been brilliantly 
marketed as ”the computer for the rest of us,” with the implication that ”the rest of us” need things 
made simple and don’t want to ”be bothered with technical things.” And from the beginning, the 
implication has been that it is a good system for women and children. If it is, it is not, in any simple 
sense, because it is ”easy.” When the Macintosh is experienced as good, it is experienced as good 
because, for some people, it feels like a thinking environment that ”fits,” while for others, and for 
very different reasons, the IBM feels like a thinking environment that ”fits.”

As it happens, the Macintosh’s iconic style may be winning this argument. The designers of 
computer interfaces might interpret this as final proof of the technical superiority of icons. A 



22

psychologist might read it as putting in question the hard/soft split. Perhaps everyone is really 
”soft” after all, and ”hard” is a construct that is dropped when it is not needed for acceptability or 
prestige or functionality. Others might simply say that icons are ”easier.” All of the above may be in 
part true. But from our perspective what is important is that the iconic victories are part of a larger 
cultural shift towards an acceptance of concrete, relational ways of thinking.

The icons in the Macintosh reflect something deeper, a philosophy of ”object-oriented pro-
gramming.” In the traditional concept of a program the unit of thought is an instruction to the 
computer to do something. In object-oriented programming the unit of thought is creating and 
modifying interactive agents within a program for which the natural metaphors are biological and 
social rather than algebraic. The elements of the program interact as would actors on a stage. This 
style of programming is not only more congenial to those who favor soft approaches, but puts an 
intellectual value on a way of thinking that is resonant with their own. It undermines the elitist 
position of the ”bards” in two ways. First, within the world of programming, it legitimates alterna-
tive methods. Second, in the larger intellectual culture, it supports trends in cognitive theory that 
challenge the traditional canon.

Until recently, prevailing models of cognitive theory have bolstered the commitment of 
psychologists and educators to the superiority of algorithmic and formal thinking. They were gi-
ven support by the cognitive theorists most influential in the computer world, the leaders of the ar-
tificial intelligence community. In the late 1970s and early 1980s, the model of AI with the greatest 
visibility was the rule-based ”expert system” with its model of mind as a structured information 
processor. Critics of how computers influence the way we think cited the information-processing 
model as demonstrating the instrumental reason and the lack of ambiguity allegedly inherent in 
all computational thinking about intelligence (see, e.g., Dreyfus, 1979; Weizenbaum, 1976). But 
artificial intelligence is not a unitary enterprise. And recently, another model has become increa-
singly prominent: ”emergent AI.” 26

Emergent AI does not suggest that the computer be given rules to follow but tries to set up 
a system of independent elements within a computer from whose interactions intelligence is ex-
pected to emerge. Its sustaining images are drawn, not from the logical, but from the biological. 
Families of neuron-like entities, societies of anthropomorphized subminds and sub-subminds, 
are in a simultaneous interaction whose goal is the generation of a fragment of mind. We noted 
that these models are sometimes theorized in notions of ”mind as society,” where negotiational 
processes are placed at the heart of all thinking. Those who espouse and support such models are 
more inclined to find bricolage acceptable than are classical Piagetians. What concerns us here is 
not which of these trends in AI is ”correct,” just as we aren’t advocating a choice between the use 
of icons and the use of textual instructions in computer operating systems. What does concern us 
is that the new trends -- icons, object-oriented programming, actor languages, society of mind, 
emergent AI -- all create an intellectual climate in the computational world that undermines the 
idea that formal methods are the only methods.

Thus, recent technological developments in interfaces, programming philosophy, and artificial 
intelligence have created an opening for epistemological pluralism. There is the possibility for new 



23

alliances between computation and the theorists as well as the practitioners of a science of the 
concrete. We began by presenting the notion of epistemological pluralism by reference to three 
streams of thought which, although different in many ways, converge in reasserting the impor-
tance of things in thinking. We close by noting the opportunity for their theoretical unification.

Louis Althusser wrote about psychoanalysis that the important breakthrough was not any par-
ticular statement about the mind, but the step of recognizing the unconscious as an object of study 
that defines a new theoretical enterprise (Althusser, 1964-1965). Psychology had considered the 
rational and the conscious as the quintessential mental activity; Sigmund Freud shifted the ground 
to the irrational and the unconscious. The unconscious was not only given recognition as an im-
portant ”factor,” but became an object of science in its own right. Similarly, we believe there is an 
opening for a break with ways of thinking that take the abstract as the quintessential activity of 
intelligence. We believe that the three intellectual movements we have noted -- feminism, ethno-
graphy of science, and computation -- are elements of a sea change that would not only recognize 
concrete thinking as important, but promote it to an object of science in its own right.

On a more down-to-earth level, there is every reason to think that revaluing the concrete 
will contribute to a computer culture that treats the computer as an expressive medium and en-
courages differentiated styles of use and relationship with it. There is every reason to think that 
this computer culture will be more welcoming and nurturing to women -- and to men. Gilligan 
has said that ”women’s place in man’s life cycle” is to protect the recognition ”of the continuing 
importance of attachment in human life” (Gilligan, 1982, p. 23). We conclude with an analogous 
point. The role of feminist studies in the nascent computer culture is to promote the recognition 
of diversity in how we think about and appropriate formal systems and encourage the acceptance 
of our profound human connection with our tools.

Footnotes

1.	 Edited collections include Bleir (1986) and Harding and Hintikka (1983). An overview that 
highlights many of the issues we deal with in this essay is provided by Elizabeth Fee (in Bleir, 
1986). In this chapter we situate our position by focusing on two writers, Carol Gilligan and 
Evelyn Fox Keller. Gilligan, with her emphasis on moral discourse, might seem out of place 
in a discussion of noncanonical approaches to science and technology. But here we argue 
that key issues in the critique of science are not about scientific reasoning but about reaso-
ning. Juxtaposing moral and computational reasoning helps us make this point. In addition, 
Gilligan’s critical relationship to the theories of Lawrence Kohlberg is analogous to our own 
critical relationship to Piaget’s work. We emphasize Keller because her work underscores, as 
does ours, the importance of relationships with objects in the development of noncanonical 
styles. Using Gilligan and Keller as a contrasting pair allows us to highlight two different 
dimensions of what we call the ”soft” approach to science. See Gilligan (1982), Keller (1983, 
1985). 



24

2.	 A sample of relevant studies in scientific ethnography is provided by Knorr-Cetina and Mul-
kay (1983). See also Knorr-Cetina (1981), Latour and Woolgar (1979), Traweek (1989). A 
sample of studies on everyday thinking is contained in Rogoff and Lave (1984). Also see Lave 
(1988). 

3.	 The Macintosh’s replacement of proposition-like commands by the use of concrete icons has 
theoretical roots in a style of programming usually called ”object oriented.” For a nontechni-
cal discussion, see Kay (1977, pp. 230-44); (1985, pp. 122ff.). The reaction within artificial 
intelligence against abstract, propositional, rule-driven methods was given literary expression 
in the writings of Douglas Hofstadter. See, for example, Hofstadter (1985, pp. 631-65). Two 
other manifestations of this reaction are Minsky (1987) and Rumelhart, McClelland, and the 
PDP Research Group (1986). 

4.	 For a fuller discussion of the computer as an evocative and concretizing object see Turkle 
(1984). 

5.	 Gilligan (1982). For a critical discussion of Gilligan’s proposals and her reply, see Kerba, et 
al. (1986, pp. 304-33). Its methodological criticisms of Gilligan’s treatment of the relationship 
between ”voice” and gender do not detract from how her subjects illustrate the way of thin-
king we shall call ”bricolage.” 

6.	 Research reports that emphasize approach to programming or programming style in the sen-
se we are using it here include Papert, de Sessa, Weir, and Watt (1979), Turkle (1980, 1984, 
esp. chap. 3), Weir (1987), Turkle, Schön, Nielsen, Orsini, and Overmeer (1988), Motherwell 
(1988), and Harel (1988). 

7.	 Lisa and Robin were part of a larger study of Harvard and MIT students taking introductory 
programming courses. The study found anxiety about an identity as a ”computer person” to 
be an important aspect of reticence toward computers, especially among women. See Turkle 
(1988). See also Kiesler, Sproull, and Eccles (1985). 

8.	 See, for example, the ethnographic studies referenced in Note 3 and the writings on scientific 
epistemology from the tradition of feminist scholarship referred to in Note 1. 

9.	 Empirically, we sometimes find each aspect of soft mastery - bricolage as a style of organiza-
tion and closeness to the object - without the presence of the other. In particular, one finds 
people who are planners but who enjoy a close relationship with concrete objects (and who 
experience computational objects this way). On the pairing of planning and what they call an 
interactive style with the computer, see Sutherland and Hoyles (1988). 



25

10.	 In our research, the male/hard and female/soft dichotomy was most dramatic in a predomi-
nantly white, wealthy private school in the South, where traditional patterns of socialization 
would favor boys learning the ways of control, hierarchy, and distance, and girls learning the 
ways of negotiation and closeness. 

11.	 Levi-Strauss (1968). Levi-Strauss contrasted bricolage with Western science, ignoring the sig-
nificant aspects of bricolage present in the latter. Several recent writers have written in a way 
that begins to redress this imbalance. See, for example, Feyerabend (1975), Hanson (1958), 
and Wittgenstein (1953). In a less formal vein, see Feynman (1985). 

12.	 In its ideal, the structured method would have the programmer go beyond subprocedures to 
make one procedure that could be given different parameters to produce arms and legs, right 
and left sides, even differently shaped people. This aesthetic, known as procedural abstracti-
on, wants to see a right arm and a left leg disappear into a generalized abstract idea of ”limb.” 
But for someone like Alex, the top priority is staying in touch with the concrete. He is aware 
of the importance of organizing his program in order to find his way around it, but he does 
so by giving it what he calls ”rhythm” rather than a hierarchical structure of procedures and 
subprocedures. 

13.	 Although we have described Anne’s program elsewhere, we redescribe it here in enough detail 
for the reader to appreciate how the concrete and the formal can come to the same place by 
alternative routes. Anne’s program has the merit of showing in compact form a set of qualities 
characteristic of the bricoleur that are usually more diffusely represented. See Turkle (1984, 
pp. 110-115). 

14.	 Bricolage does not exclude the use of subprocedures; it simply does not give their a priori 
delineation the status of a privileged method. Some ways that bricoleurs use subprocedures 
in a way that feels natural to them are captured in the following examples. First, a part of a 
program first conceived holistically can be demarcated as a subprocedure at any stage of pro-
gramming. Second, subprocedures need not be ”black boxes”; they too can grow by sculpting 
as the program grows as a whole. Finally, the bricoleur may use as subprocedures programs 
that happen to be ”lying around,” possibly even programs that were originally made for very 
different purposes. 

15.	 Gilligan (1982). Kohlberg had already been challenged on other grounds. See, for example, 
Gibbs (1977). Similar issues have been raised in critiques of Jean Piaget. See, for example, 
Toulmin (1972). Toulmin argues that Piaget’s experimental investigations reflect an a priori 
commitment to a Kantian position. We single out Toulmin because, unlike most of Piaget’s 
critics, he does not quarrel with the detail of how the stages are described but with the episte-
mological assertion of the final end point. 



26

16.	 Keller (1983, p. 198). Keller describes McClintock’s approach as dependent on a capacity to 
”forget herself,” immerse herself in observation, and ”hear what the material has to say.” 

17.	 These experiments with Lego and programming are undertaken in a Piagetian spirit. See Pi-
aget (1951) for experiments that deal with how mechanisms work. For a personal statement 
about the power of gears as an introduction to formal systems, see Papert (1980). 

18.	 Our sample does not allow us to say that girls did systematically better than boys. Research is 
in progress on this point. Our present discussion is about styles of explanation (rule-driven 
vs. body syntonic), not distribution of abilities. 

19.	 For example, most of those inspired by the Carnegie-Mellon schools of artificial intelligence. 
See Michalski et al. (1983). 

20.	 Among the most influential writings that integrate this hypothesis are Keller (1985) and Cho-
dorow (1978). 

21.	 For an excellent overview of the object relations perspective, see Greenberg and Mitchell 
(1983). 

22.	 In contrast, D.W. Winnicott has some suggestive ideas about the power of the ”transitional 
object” - the baby’s blanket, the teddy bear - that, in developmental terms, mediates between 
experience of self and nonself. In the current context, it suggests the power of the inanimate 
in inner life. 

23.	 The Logo turtle was designed to be ”body syntonic,” i.e., to allow users to put themselves in 
its place. When children learn to program in Logo, they are encouraged to work out their 
programs by ”playing turtle.” The classic example of this is developing the Logo program for 
drawing a circle. This is difficult if you search for it by analytical means (you will need to find a 
different equation), but easy if you put yourself in the turtle’s place and pace it out. (The turtle 
makes a circle by going forward a little and turning a little, going forward and tuning a little, 
etc.) Turtles are a path into mathematics for people whose surest route is through the body. 
See Papert (1980c). 

24.	 See Turkle (in press). For more on women and the romantic reaction, see Turkle (1988a). 

25.	 On values for a new computer culture, see Papert (1987). 

26.	 For more extended comments on the ”two AIs,” see Papert (1988b).



27

References

Althusser, L. (1964-1965, December-January). Freud et Lacan. La Nouvelle Critique, Nos. 161-
162.

Bleir, R. (Ed.). (1986). Feminist approaches to science. New York: Pergamon.

Chodorow, N. (1978). The reproduction of mothering: Psychoanalysis and the sociology of gen-
der. Berkeley, CA: University of California Press.

Davis, P. J., & Hersh, R. (1981). The mathematical experience. Boston: Houghton Mifflin.

Dreyfus, H. (1979). What computers can’t do: The limits of artificial intelligence (2nd ed.). New 
York: Harper and Row.

Feyerabend, P. (1975). Against method: The outline of an anarchistic theory of knowledge. Lon-
don: NLB.

Feynman, R. (1985). Surely you must be joking Mr. Feynman. New York: Norton

Gibbs, J. (1977). Kohlberg’s stages of moral judgement: A constructive critique. Harvard Educati-
on Review, 47(4), 43-61.

Gilligan, C. (1982). In a different voice: Psychological theory and women’s development. Cambrid-
ge, MA: Harvard University Press.

Gilligan, C. (1988). Two moral orientations. In C. Gilligan, J. V. Ward, & J. M. Taylor (Eds.), Map-
ping the moral domain. Cambridge, MA: Harvard University Press.

Greenberg, J. R., & Mitchell, S. A. (1983). Object relations in psychoanalytic theory. Cambridge, 
MA: Harvard University Press.

Hanson, N. R. (1958). Patterns of discovery. Cambridge, UK: Cambridge University Press.

Haraway, D. (1979). The biological enterprise: Sex, mind, and profit from human engineering to 
sociobiology. Radical History Review, 20, 206-237

Harding, S., & Hintikka, M. B. (Eds.). (1983). Discovering reality: Feminist perspectives on episte-
mology, metaphysics, methodology, and philosophy of science. London: Reidel.



28

Harel, I. (1988). Software design for learning: Children’s construction of meaning for fractions and 
Logo programming. Unpublished doctoral dissertation, MIT, Cambridge, MA.

Hofstadter, D. (1985). Waking up from the Boolean dream, or subcognition as computation. In D. 
Hofstadter (Ed.), Metatmagical themas: Questing for the essence of mind and pattern (pp. 631-
665). New York: Basic Books.

Kay, A. (1977). Microelectronics and the personal computer. Scientific American, 237, 230-244.

Kay, A. (1985). Software’s second act. Science, 85, 122.

Keller, E. F. (1983). A feeling for the organism: The life and work of Barbara McClintock. San 
Francisco: W. H. Freeman.

Keller, E. F. (1985). Reflections on gender and science. New Haven, CT: Yale University Press.

Kerba, L. K. (1986). On In a Different Voice: An interdisciplinary forum. Signs, 11(2), 304-333.

Kiesler, S., Sproull, L., & Eccles, J. S. (1985). Poolhalls, chips, and war games: Women in the culture 
of computing. Psychology of Women Quarterly, 9.

Knorr-Cetina, K. (1981). The manufacture of knowledge: An essay on the constructivist and con-
textual nature of science. Oxford: Pergamon.

Knorr-Cetina, K., & Mulkay, M. (Eds.). (1983). Science observed: Perspectives on the social stu-
dies of science. London: Sage Publications.

Latour, B., & Woolgar, S. (1979). Laboratory life: The social construction of scientific facts. Beverly 
Hills, CA: Sage Publications.

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge, 
UK: Cambridge University Press.

Levi-Strauss, C. (1968). The savage mind. Chicago: University of Chicago Press.

Merchant, C. (1980). The death of nature. New York: Harper and Row.

Michalski, R. S., Michalsky. J. G., & Mitchell, T. M. (Eds.). (1983). Machine learning: An artificial 
intelligence approach. Los Altos, CA: Morgan Kaufmann.



29

Minsky, M. (1987). Society of mind. New York: Simon and Schuster.

Motherwell, L. (1988). Gender and style differences in a Logo-based environment. Unpublished 
doctoral dissertation, MIT.

Papert, S. (1980a). The mathematical unconscious. In J. Wechsler (Ed.), Aesthetics and science. 
Cambridge, MA: MIT Press.

Papert, S. (1980b). The gears of my childhood. In S. Papert (Ed.), Mindstorms: Children, compu-
ters, and powerful ideas. New York: Basic Books.

Papert, S. (1980c). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

Papert, S. (1987). Technological thinking versus computer criticism. Educational Researcher, 
16(1), 22-30.

Papert, S. (1988). One AI or many. Daedalus. 117(1 ), 1-13.

Papert S., de Sessa, A., Weir, S., & Watt, D. (1979). Final Report of the Brookline Logo Project 
(Logo Memos 53 and 54). Cambridge, MA: MIT.

Piaget, J. (1951). La prise de conscience. Paris: Universitaires de France.

Piaget, J., & Inhelder, B. (1958). The growth of logical thinking from childhood to adolescence. 
New York: Basic Books.

Rogoff, B., & Lave, J. (Eds.). (1984). Everyday cognition: Its development in social context. Cam-
bridge, MA: Harvard University Press.

Rumelhart, E. D., McClelland, J. J., & the PDP Research Group. (1986). Parallel distributed proces-
sing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.

Sutherland, R., & Hoyles, C. (1988). Gender perspectives on Logo programming in the mathema-
tics curriculum. In C. Hoyles (Eds.), Girls and computers (Bedford Way Papers, No. 34), London: 
Institute of Education, University of London.

Toulmin, S. (1972). Human understanding. Princeton, NJ: Princeton University Press.

Traweek, S. (1989). Beantimes and lifetimes: The world of high energy physicists. Cambridge, MA: 
Harvard University Press.



30

Turkle, S. (1980). Computer as Roschach. Society, 17, 15-22.

Turkle, S. (1984). The second self: Computers and the human spirit. New York: Simon and Schus-
ter.

Turkle, S. (1988a). Computational reticence: Why women fear the intimate machine. In C. Krama-
rae (Ed.), Technology and women’s voices: Keeping in touch. New York: Pergamon.

Turkle, S. (1988b). Artificial intelligence and psychoanalysis. Daedalus, 117(1 ), 241-268.

Turkle, S. (in press). Romantic reactions: Paradoxical responses to the computer presence. In M. 
Sosna & J. J. Sheehan (Eds.), Boundaries of humanity: Humans, animals, machines. Berkeley, CA: 
University of California Press.

Turkle, S., Schön, D., Nielsen, B., Orsini, M. S., & Overmeer, W. (1988).Project Athena at MIT. 
Unpublished manuscript.

Weir, S. (1987). Cultivating minds: A Logo casebook. New York: Harper and Row.

Weizenbaum. (1976). Computer power and human reason. San Francisco: W. H. Freeman.

Wittgenstein, L. (1953). Philosophical investigations. New York: Macmillan


